
Cite as: G. E. Mena et al., Science 
10.1126/science.abg5298 (2021).  

 
 
 

  RESEARCH ARTICLES 
 

First release: 27 April 2021   www.sciencemag.org  (Page numbers not final at time of first release) 1
   
 

The coronavirus disease 2019 (COVID-19) pandemic is an ongo-
ing public health crisis. While many studies have described the 
transmission of SARS-CoV-2 –the virus that causes COVID-19– 
in North America, Europe, and parts of Asia (1–5), the character-
ization of the pandemic in South America has received less at-
tention, despite the severe impact in many countries during the 
Southern Hemisphere winter season. While confirmed COVID-
19 cases are an important public health measure to estimate the 
level of spread of infections caused by SARS-CoV-2, they may not 
be a reliable indicator of incidence because of biases due to pop-
ulation-level health-seeking behavior, surveillance capacities, 
and the presence of asymptomatic individuals across regions (6). 
Analyses of COVID-19-related deaths as well as excess mortality 
provide an alternative and potentially less biased picture of epi-
demic intensity (7, 8). This is in part because ascertainment bi-
ases may be less pronounced for deaths than for confirmed 
cases, as people dying from COVID-19 are more likely to have 
experienced severe symptoms and thus, more likely to have been 
documented as COVID-19 positive cases by health surveillance 
systems. Age specific death data may also help explain the het-
erogeneity in COVID-19 burden and COVID-19 attributable 
deaths in different countries (9). However, the role of other fac-
tors, such as socioeconomic status – which is correlated with 

health care access– on fatality and disease burden, remains a 
particularly important open question (10) for cities with signifi-
cant economic disparities. 

Here, we analyzed incidence and mortality attributed to 
SARS-CoV-2 infection and its association with demographic 
and socioeconomic status across the urban metropolitan area 
of the capital of Chile, known as ‘Greater Santiago’. Unlike 
many other countries, Chile set up a remarkably thorough re-
porting system and made many key data sets publicly availa-
ble. To understand spatial variations in disease burden, we 
estimated excess deaths and infection fatality rates across this 
urban area. To understand disparities in the health care sys-
tem, we analyzed testing capacity and delays across municipal-
ities. We then demonstrate strong associations of these health 
indicators with demographic and socioeconomic factors. To-
gether, our results show that socioeconomic disparities explain 
a large part of the variation in COVID-19 deaths and under-
reporting, and that those inequalities disproportionately af-
fected younger people. 
 
Association between socioeconomic status and disease 
dynamics 
The Greater Santiago area is composed of 34 municipalities 
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The current COVID-19 pandemic has impacted cities particularly hard. Here, we provide an in-depth 
characterization of disease incidence and mortality, and their dependence on demographic and 
socioeconomic strata in Santiago, a highly segregated city and the capital of Chile. Our analyses show a 
strong association between socioeconomic status and both COVID-19 outcomes and public health capacity. 
People living in municipalities with low socioeconomic status did not reduce their mobility during 
lockdowns as much as those in more affluent municipalities. Testing volumes may have been insufficient 
early in the pandemic in those places, and both test positivity rates and testing delays were much higher. 
We find a strong association between socioeconomic status and mortality, measured either by COVID-19 
attributed deaths or excess deaths. Finally, we show that infection fatality rates in young people are higher 
in low-income municipalities. Together, these results highlight the critical consequences of socioeconomic 
inequalities on health outcomes. 
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–defined as having more than 95% of its area urbanized– and 
is home to almost 7 million people. While this urban center 
accounts for 36% of the country’s population, it has reported 
55% of the confirmed COVID-19 cases and 65% of the COVID-
19 attributed deaths prior to epidemiological week 36 (end of 
August 2020). Socioeconomic status (SES) in the municipali-
ties varies widely, with Vitacura having the highest value 
(SES = 93.7) and La Pintana the lowest one (SES = 17.0; Fig. 
1A), and this difference is reflected in the impact of the pan-
demic during the Southern Hemisphere winter of 2020. The 
maximum incidence in Vitacura was 22.6 weekly cases per 
10,000 individuals during the middle of May, while La Pin-
tana reported a maximum of 76.4 weekly cases per 10,000 in-
dividuals during the first week of June (Fig. 1B). As shown in 
Fig. 1C and fig. S1, the attributed COVID-19 deaths follow a 
similar (yet lagged) temporal pattern to the number of re-
ported COVID-19 cases. For instance, the highest rate of 4.4 
weekly deaths per 10,000 individuals is observed in San Ra-
mon, a municipality with a SES of 19.7, while Vitacura re-
ported a maximum of 1.6 weekly deaths per 10,000 in June. 
These social inequalities impact the overall COVID-19 mor-
tality rates as shown in Fig. 1D. 

Changes in human mobility –a proxy for physical distanc-
ing– during lockdown periods follow a similar trend. Using 
human mobility indicators, inferred from anonymized mo-
bile phone data obtained from the Facebook Data for Good 
Initiative, we show that the two municipalities with highest 
socioeconomic status exhibited a reduction in mobility by up 
to 61% during the full lockdown (dark green, Fig. 1E), com-
pared to the ones with lowest SES, which, on average, re-
duced their mobility to 40% during the this period (dark 
pink, Fig. 1E). This relationship between reductions in mobil-
ity and SES was present during all time-periods considered 
for this study (Fig. 1F) and supports the hypothesis that peo-
ple in poorer regions cannot afford to stay at home during 
lockdowns. Our result is consistent with analyses of New 
York City neighborhoods (11) and with findings from other 
studies conducted in Santiago that used different socioeco-
nomic and mobility metrics (12–14). 
 
Epidemic reconstruction reveals early transmission  
dynamics 
In order to examine the possible bias present in the incidence 
data, we reconstructed SARS-CoV-2 infections over time by 
implementing a method called regularized mortality MAP 
(RmMAP). RmMAP back calculates the most likely infection 
numbers given the temporal sequence of deaths, the onset-
to-death distribution, and the demography-adjusted infec-
tion fatality rate (IFR). Figure 2A shows the outcomes of this 
inference process, where the reconstructions from our ap-
proach and other methods are able to capture the main peak 
observed in May and June, with an estimate of the number 

of infected individuals that is 5 to 10 times larger than the 
reported values. 

The reconstructions also reveal important differences in 
the inferred number of infections during March of 2020, the 
month in which the virus was introduced in Chile by travel-
lers from affluent municipalities. We analyzed the number of 
tests performed between March 8th and April 9th, and find a 
significantly higher number of tests performed in municipal-
ities with high SES (Fig. 2B), especially during the first two 
weeks of March (Fig. 2D). In addition, an early peak of re-
ported cases was only observed in high SES municipalities 
during middle March (Fig. 2C), despite the fact that several 
COVID-19 deaths, which are lagged with respect to infection 
by up to several weeks, were reported in low SES municipal-
ities during the same period. These findings suggest that an 
early first wave of infections occurred during March and 
quickly spread through the rest of the city without being cap-
tured by the official counts. Our RmMAP estimates at the mu-
nicipality level support this claim, as they capture a high 
volume of early infections in most municipalities (Fig. 2E), a 
scenario that largely deviates from the official tallies (Fig. 
2C). 

To further validate the hypothesis of an early under-re-
porting in low SES municipalities, and to rule that these early 
activity estimates are not an artifact of our method, we per-
formed experiments on a synthetic elementary model of two 
peaks of different sizes separated in time (supplementary ma-
terials). These experiments confirm that RmMAP is capable 
of recovering this bi-modal phenomena, while other methods 
fail to do so; they over-smooth the true signal and the earlier 
peak is typically not recovered. This early under-reporting 
signal suggests that the patterns of mortality and testing ob-
served across the Greater Santiago are partially explained by 
an early failure of healthcare systems in informing the popu-
lation with sufficient situational awareness about the real 
magnitude of the threat (15). 
 
Excess deaths match COVID-19 attributed deaths 
Excess deaths –defined as the difference between observed 
and expected deaths– can provide a measure of the actual im-
pact of the pandemic in mortality by quantifying direct and 
indirect deaths related to COVID-19 (7, 8, 16). We estimated 
the expected deaths for 2020 by fitting a Gaussian process 
model (17) to historical mortality data from the past twenty 
years, and used them to identify the increased mortality dur-
ing to the pandemic, controlling for population growth and 
seasonality. As shown in Fig. 3A, the number of deaths ob-
served between May and July 2020 is more than 1.73 [1.68, 
1.79] times the expected value, with a peak surpassing 2110 
death counts in epidemiological week 24 (first week of June, 
2020) compared to an expected value of 802 deaths and an 
average number of deaths of 798 between 2015 and 2019. 
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When comparing the number of deaths by age in the year 
2020 with our model’s predictions we observe striking pat-
terns. Although people younger than 40 years old have an 
overall lower mortality rate than those from older age groups 
as expected, they still exhibit a nearly two-fold increase in the 
total deaths with a peak in the observed deaths occurring 2 
weeks earlier than for those older than 60 years old (Fig. 3B). 
For the age groups 40-60, 60-80, and older than 80, the ob-
served deaths are 2.8, 3.2, and 2.4 times higher than expected, 
respectively. Even though the age group 80+ exhibits the 
highest expected mortality values for 2020, the group that 
contains people between 60 and 80 years old displays the 
highest weekly count (936 during epidemiological week 24), 
the biggest deviation from the predicted values, and the high-
est values of excess deaths (645 more deaths than expected, 
Fig. 3B). 

COVID-19 attributed deaths for the entire Greater Santi-
ago area fall withing the credible intervals of excess deaths 
until late June, when the attributed deaths increase to rates 
that are even higher than the excess deaths, suggesting that 
under-reporting in COVID-19 attributed deaths is unlikely 
(Fig. 3C). COVID-19 confirmed deaths –those with a PCR-
confirmed SARS-CoV-2 test– follow a similar temporal pat-
tern, and the difference between confirmed and COVID-19 at-
tributed deaths gets smaller toward the end of August, 
indicative of an improved testing capacity. This pattern is 
consistent when compared to normalized deaths by popula-
tion size for each municipality (Fig. 3D), which also shows 
COVID-19 attributed deaths higher than the excess deaths in 
most of the cases. The anomalies in the observed versus pre-
dicted deaths for 2020 across different age groups also dis-
play a significant negative association with socioeconomic 
status, except for the 80+ group (Fig. 3E), suggesting a higher 
death burden in lower SES municipalities, independent of 
their age composition. Furthermore, the two municipalities 
with SES higher than 80 (Las Condes and Vitacura) had z-
scores of much smaller magnitude (with the exception of the 
oldest age group) indicating that there patterns of mortality 
did not deviate much from what would have been expected 
on a normal year in people younger than 80 years old. 

Although the observation that COVID-19 attributed 
deaths are greater than the estimated excess deaths might be 
counterintuitive (Fig. 3D), it may indicate the presence of 
changes in overall mortality patterns due to other causes, in-
cluding a lower number of deaths due to reduction in the mo-
bility. In addition, lower numbers of deaths were reported for 
respiratory infectious diseases such as influenza and pneu-
monia, and cancer during July and August of 2020 compared 
to the period 2015-2019 (Fig. 3F). Changes in mortality from 
respiratory diseases can be explained by a mild influenza sea-
son in the Southern Hemisphere during the winter of 2020 
(18), which is consistent with our observation that much 

fewer cases of respiratory viruses have been detected in Chile 
during the 2020 season (supplementary materials). A de-
crease in the number of cancer attributed deaths can be ex-
plained by mortality displacement (19, 20), but additional 
analyses need to be conducted to establish this hypothesis. 
Alternative explanations for changes in all-cause mortality 
should also consider possible changes in external and behav-
ioral causes of mortality. We do not observe a substantial con-
tribution from these causes (see supplementary materials, 
along with additional detailed analyses). 
 
More testing with lower waiting times in wealthy areas 
To further understand the consequences of insufficient early 
testing, we conducted a deeper analysis of different testing 
metrics at the municipality level. We first looked at testing 
capacity measured as weekly positivity rates, the fraction of 
tests that are positive for SARS-CoV-2. Our results show that 
the positivity signal tracked the course of the epidemic, peak-
ing at times of highest incidence between May and July, and 
suggesting a highly saturated health-care system during this 
period across the entire city (Fig. 4A). A strong negative asso-
ciation between positivity and SES (Fig. 4B) further denotes 
difficulties in access to health care that is even more pro-
nounced in lower SES municipalities. Despite changes in pos-
itivity rates over time, this testing metric also significantly 
correlated with number of cases (Fig. 4C) and number deaths 
(Fig. 4D). 

Our findings on the number of tests conducted show a ra-
ther paradoxical association with SES and mortality. Many 
months into the epidemic, the early positive association be-
tween tests per capita and SES (Fig. 2B) reversed (Fig. 4E), 
indicative of an improvement in testing capacity over time, 
so that more tests were performed in the most affected areas. 
Similarly, the number of tests started to positively correlate 
with deaths (Fig. 4F), suggesting that the number of tests are 
strong predictors of mortality. 

We also analyzed testing capacity by estimating the delays 
in obtaining test results. We inferred the distribution of the 
delay between onset of symptoms and report of the results, 
from which we obtained the proportion of cases that are pub-
licly reported within one week since the onset of symptoms 
or timeliness (21). As shown in Fig. 4G, timeliness follows a 
similar temporal course as test positivity during May and 
part of June, but in the opposite direction. This metric is as-
sociated with SES, suggesting that municipalities with low 
SES, on average, get their test results later than the ones with 
high SES (Fig. 4H). Timeliness also negatively correlates with 
number of cases (Fig. 4I), total number of deaths (Fig. 4J), 
and with positivity (Fig. 4K). When looking at tests per death, 
a metric that can be used as a faithful proxy of testing capac-
ity (22), we observe a positive correlation with socioeconomic 
status (Fig. 4L), indicating that testing disparities persisted 
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during the epidemic, with low SES areas being affected the 
most. In the supplementary materials we further discuss the 
associations between our metrics and case counts. 
 
Infection fatality rate depends on socioeconomic status 
In the absence of serological surveys, a direct inference of an 
infection fatality rate (IFR) is challenging. The degree of as-
certainment depends on many factors, including testing ca-
pabilities and the likelihood of having symptomatic 
infections. Also, unlike deaths, age information of reported 
cases is not available at the municipality level, making this 
inference more challenging. To address these hurdles and to 
have estimates of the IFR, we implemented a hierarchical 
Bayesian model that considers the relationship between 
deaths, observed cases, and true infections across location, 
time, and age group. We first estimated the case fatality rate 
(CFR) by assigning total cases into age groups in a simple way 
that projects the overall age-distribution of cases to particu-
lar municipality demographics (Fig. 5A, see supplementary 
materials for details). With the exception of the oldest age 
group, case fatality rate shows a negative association with so-
cioeconomic status. Similarly, our resulting IFR estimates 
once corrected for under-ascertainment display a similar pat-
tern (Fig. 5B) but on an order of magnitude lower than the 
CFR estimates. We then grouped the municipalities into four 
categories of similar sizes and label them as low, mid-low, 
mid-high, and high socioeconomic category. When compar-
ing the IFR ratio between the low and the high SES catego-
ries, the results show significantly higher infection fatality 
rate in the low SES group in people younger than 80 years 
old (Fig. 5C). The age groups 60-80 and 40-60 exhibit an IFR 
that are 1.4 and 1.7 times higher respectively in the low SES 
category, compared to the high SES one. The difference is 
even more pronounced in the younger age group (0-40 years 
old), which shows values of IFR that is 3.1 times higher for 
the municipalities with the lowest socioeconomic status. Al-
together, these results are in line with the analyses of excess 
deaths presented in Fig. 3E. The lack of association between 
IFR and SES in the oldest age group can be attributed to a 
lower life expectancy (23), which in fact is factored in the es-
timation of SES (see methods for details) and that elderly 
people might be, in general, healthier enough to survive until 
that age. 
 
Discussion 
In order to understand the true burden of COVID-19, it is crit-
ical to consider demographic and socioeconomic factors and 
their consequences for the public health response. Here, we 
analyzed data from the capital of Chile, a highly segregated 
city. Our results align with the recent literature on uneven 
health risks globally, which has highlighted how socially and 
economically deprived populations are more vulnerable to 

the burden of epidemics (24, 25). Mounting evidence suggests 
that such differences have also manifested in the context of 
the COVID-19 pandemic (26, 27). Since the pathways modu-
lating these differential outcomes are not well-understood, 
comprehensive accounts are urgently needed (28), so that 
more resilient and socially-aware public-health strategies can 
be planned in advance of future pandemics. In Chile, recent 
studies have suggested a link between SES and effectiveness 
of non-pharmaceutical interventions such as stay-at-home or-
ders (12, 13, 29). Our work further explores this topic by 
providing an holistic perspective about how the interplay be-
tween behavioral, social, economic, and public-health factors, 
modulates the observed heterogeneity in infection incidence 
and mortality. Along with the main findings, we also intro-
duced several methodological innovations. Our Bayesian 
method for joint inference of infection fatality rates and un-
der-reporting is a new contribution in this field. We show 
that it may not be necessary to have complete epidemiologi-
cal data sets (here, age) to draw valid inferences, as long as 
the solution space is constrained enough by meaningful pri-
ors and demographic structure. 

Our results show a strong link between socioeconomic 
and demographic factors with COVID-19 outcomes and test-
ing capacity of COVID-19 in Santiago. This association is 
manifested as a reinforcing feedback loop, as highlighted by 
our findings. First, our analysis of human mobility indicates 
that municipalities with lower socioeconomic status were less 
compliant with stay-at-home orders, possibly because people 
from lower SES areas are unable to work from home, leaving 
them at a higher disease risk. Second, our analyses revealed 
an under-reporting of infections in low income areas at the 
start of the outbreak. Since public-health measures were 
taken in response to nominal case counts, these places were 
under prepared, with a poor health-care response that re-
sulted in higher death counts. Third, anomalies in the overall 
excess deaths are higher in low SES areas, particularly in peo-
ple younger than 80 years old, suggesting that more vulnera-
ble municipalities were hit the hardest. Fourth, the analyses 
of test positivity rates, timeliness, and tests per death indicate 
an insufficient deployment of resources for epidemiological 
surveillance. Higher positivity rates in health care centers 
suggest the need for greater testing and detection. At the 
same time, slower turnaround in test results can lead to 
greater potential for transmission, since even small delays be-
tween onset of symptom, testing, and final isolation, signifi-
cantly hinder the capability of public health systems to 
contain the epidemic (30). Finally, infection fatality rates 
were higher in lower SES municipalities, especially among 
younger people. 

We propose two complementary explanations for the as-
sociation between infection fatality rate and socioeconomic 
status. First, a higher IFR may reflect limited access to health 
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services during the pandemic, and the strong association be-
tween the number of tests per death and SES supports this 
claim. We also show in supplementary materials that the 
South and West zones (based on health coverage division) 
have 4 times fewer beds per 10,000 people and 4 times lower 
proportion enrolled in the private health system than the 
East zone, which contains all the municipalities with an SES 
of 60 or higher. Strikingly, more than 90% of the COVID-19 
attributed deaths in the South and West zone occurred in 
places other than healthcare facilities, compared to 55% in 
the East. Second, more vulnerable communities may experi-
ence a higher prevalence of the comorbidities (31) that are 
associated with more severe presentations of COVID-19. Peo-
ple in low SES municipalities are more likely to be overweight 
and to live in overcrowded conditions (supplementary mate-
rials), factors that ultimately can put these populations at 
higher disease risk. The interaction of these two explanations 
can lead to a high disparity among different socioeconomic 
groups. 

Our findings need to be considered in light of the follow-
ing limitations. Mobility data from mobile phones are likely 
to be biased due to differential mobile phone ownership in 
different demographic groups. While Facebook mobility data 
can be biased in this way, our results are consistent with 
other studies in Santiago that used different socioeconomic 
and movement measurements [see (12–14) and supplemen-
tary materials]. Our methods depend on several assumptions. 
The back-calculated RmMAP estimates rely on a choice of the 
infection-to-death distribution and assume that the IFR do 
not change over time, and the excess mortality estimates de-
pend on the choice of a kernel. Our IFR estimates are derived 
from a complex Bayesian model and are based on assump-
tions regarding reporting rates and age distribution of infec-
tions. Extensive sensitivity analyses suggest that our results 
are stable to deviations from these assumptions (supplemen-
tary materials). 

To conclude, this study highlights major consequences of 
healthcare disparities in a highly segregated city, and pro-
vides new methodologies, that account for incomplete data, 
for studying infectious disease burden and mortality in other 
contexts. 
 
Materials and methods 
Data 
Socioeconomic status 
We define the Socioeconomic status index (SES) as SES = 100 
− SPI, where SPI is the Social Priority Index (or ‘Indice de 
Prioridad Social’ in Spanish) estimated for 2019. The SPI in-
dex varies between 0 and 100, and has been reported yearly 
since 1995 by the Chilean Ministry of Social Development and 
Family. The SPI value denotes the priority of each municipal-
ity for the social programs of the regional government, and 

thus, municipalities with lower SES have higher social prior-
ity. The SPI index equally weights three components: (i) in-
come and poverty, (ii) access and quality of education, and 
(iii) health factors such as access to healthcare and life expec-
tancy. For each component, the values are standardized on a 
common scale from 0 to 100, where the value 100 represents 
the worst relative situation (highest priority) and 0 the best 
situation (least priority). 
 
COVID-19 
At the end of January 2020, the Chilean government deter-
mined that all suspected cases of COVID-19 must be notified 
in a mandatory and immediate manner to the respective 
Health Epidemiology Unit and the Ministry of Health, 
through the specific form on the EPIVIGILA platform. In ad-
dition to the suspected cases that are identified in healthcare 
facilities, the government also implemented an active testing 
surveillance program to identify asymptomatic and pre-
symptomatic cases. The criteria for the active testing are: i) 
people who have not been identified yet as confirmed or sus-
pected COVID-19 or (ii) living in vulnerable areas, and (iii) 
individuals who live in institutions for a long time such as 
jails, nursing homes, the National Service for Minors, among 
others. Symptoms onset dates are reported by the patient to 
a physician, in the case that the person attended a health in-
stitution, or by the volunteers that are conducting surveil-
lance in the community through a survey. 

The Chilean Ministry of Science, Technology, Knowledge, 
and Innovation has made possible the access to aggregated 
data collected through the EPIVIGILA platform, which are 
available in the format of multiple reports. These reports also 
contain data on population projections for 2020, testing, pos-
itivity, and other metrics used in the study. One of the reports 
tracks the number of cases whose onset of symptoms started 
at a given epidemiological week, for each municipality. Given 
that they are published twice a week (typically Monday and 
Friday), we were able to analyze the history of such reports 
to estimate the delays. Timeliness is thus defined as the prob-
ability of getting a retrospective delay smaller than 7 days, 
based on the Monday’s reports. More details can be found in 
the supplementary materials. 
 
Mortality 
The Vital Statistics System in Chile is continuous, mandatory, 
and centralized. It is composed of the Civil Registry and Iden-
tification Service (CRIS), the National Institute of Statistics, 
and the Ministry of Health through the Department of Health 
Statistics and Information (DHSI). When a person dies, a 
medical death certificate is generated by the CRIS and dis-
tributed to health institutions. The mortality database is built 
with the death certificates, which are subjected to a rigorous 
validation process, to guarantee the reliability and validity of 
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the information. The DHSI standardizes the clinical terms in 
the format of the International Statistical Classification of 
Diseases (ICD-10). Since March 2020, the DHSI has imple-
mented the recommendations of the WHO for coding the 
deaths resulting from COVID-19. In this study, confirmed 
COVID-19 deaths correspond to deaths in which the virus has 
been identified with a positive PCR test and have been coded 
as U07.1. Similarly, attributed COVID-19 deaths correspond 
to deaths in which the virus was not identified but clinically 
diagnosed as probable or suspected COVID-19 case, and have 
been coded as U07.2. 
 
Human movement 
Facebook’s Data for Good has provided access to their Geoin-
sights portal in response to COVID-19 crisis, from where it is 
possible to obtain aggregated data of their users (32). These 
data sets are anonymized and contain information of Face-
book users that have a smartphone with the location services 
enabled. The movement vector from tile i to j (with i ≠ j) at 
time t is defined as the transition from the modal location i 
at the preceding 8-hour bin to the modal location j in the cur-
rent 8-hour bin. Facebook also provides a baseline value, de-
fined as the average number of users who transit from tile i 
to j at a given day of week and time of day during a baseline 
period. The baseline period corresponds to the 45 days prior 
to the initiation of the movement data for that particular lo-
cation (for Chile, the data collection was initialized on 
03/25/2020). Using this data set, we calculated the percent-
age change compared to baseline for each i to j transition at 
a given 8-hour period, and then estimated the average per-
centage change for each municipality and epidemiological 
week. We only used the starting location (municipality) for 
the average percentage change estimation. The size of the 
side of the tile is approx. 2.4 km. 
 
Models 
Inference of SARS-CoV-2 infections with RmMAP 
We aim to estimate the number of infected individuals over 
time sI  given a series of observed COVID-19 attributed 

deaths tD  and a known onset-to-death distribution T. We use 

a Poisson deconvolution model for deaths given I and T: 

( )| ,t t s ss
D T I Poisson T I−∼ ∑  (1) 

where ( )sT P T s= =  is the probability that the onset-to-death 

equals s days. Estimates of I maximizing Eq. 1 can be obtained 
with an expectation maximization algorithm (6, 33–35), but 
the outcome is typically unstable (36). RmMAP overcomes 
this issue by adding a quadratic penalty to the log-likelihood. 
The iterations of RmMAP write as 
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By scaling the final series newI  by the inverse IFR we ob-
tain the inferred values of infected individuals over time. A 
detailed discussion of this method along with sensitivity anal-
ysis and comparison with existing methodology are pre-
sented in the in the supplementary materials. 
 
Estimation of excess deaths 
We used Gaussian Processes (GP) regression (17) to estimates 
excess deaths for 2020. GPs can be understood as an infinite 
dimensional Bayesian regression: in the finite dimensional 

case one fits i ii iiy w x= +∑   where i  are Gaussian inde-

pendent identically distributed errors, ix  are covariates and 

iw  coefficients sampled from a prior ( )p w . Likewise, with 

GPs we fit ( )i i iy f x= +   where f is a function sampled from 

a prior over functions ( )p f . GPs are appealing because the 

level of complexity is automatically adjusted by the complex-
ity of data, and because they are computationally tractable. 

Priors over f are specified through a kernel K, which en-

codes the correlational structure of data so that ( ),K x x′  is 

simply the prior covariance between ( )f x  and ( )f x′ . K de-

pends on a finite number of unknowns θ (so θK K= ) that 

have to be inferred as well. 
We used a GP to account for both long-term trends in 

mortality as well as seasonality. As in (17), we consider ker-
nels of the form 

1 2
θ θ θK K K= +  (4) 

where 1
θK  is an exponential kernel representing the long-

term variation, and is given by 

( )
2

1 2
θ 1 2

2

( ), θ exp
2θ

x xK x x
 ′−′ = − 
 

 (5) 

and 2
θK  is a periodic times exponential kernel representing 

seasonal variation 

( )
( )( )22

2 2
θ 3 2 2

4 5

2sin π( ), θ exp
2θ θ

x xx xK x x
 ′−′−′ = − −  
 

 (6) 

We considered an additional source of unstructured ran-

domness through the term ( )20,σi ∼  . We performed 

Bayesian inference (MCMC) over the joint distribution pa-

rameters ( )2θ,σ  and death counts for each time period of the 

2020 year, based on 2000-2019 all-cause mortality data and 
suitable priors for the parameters. In the supplementary ma-
terials we comment on more specific aspects, and provide an 
extensive evaluation of our model. 

on A
pril 27, 2021

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://www.sciencemag.org/
http://science.sciencemag.org/


First release: 27 April 2021  www.sciencemag.org  (Page numbers not final at time of first release) 7 
 

Infection fatality rates 
We deployed a hierarchical Bayesian joint model for report-
ing rates (and hence, IFR) per age group (a taking values 0 – 
40, 40 – 60, 60 – 80 and 80 +) and municipality m, collapsing 
over the temporal dimension. We infer the number of in-
fected individuals (and hence, IFR) based on reported cases 
C, positivity rates over time (t, month), and municipality, and 
total and COVID-19 attributed deaths D. The main appeal of 
this framework, is that although most of the components are 
not identifiable (e.g., if reporting rates and true cases are both 
unknown, the same observed case counts can be achieved by 
multiplying both by the same factor) (37), we can borrow 
from better known quantities (e.g., rough estimates of preva-
lence, reporting, etc) to enhance identification while propa-
gating the appropriate levels of uncertainty over the 
parameters. 

Specifically, the reporting rate ,m tr  links to the observed 

positivity rates ,m tpos  (in log-scale) through a logistic-linear 

relation (with parameters β), and we have include random 
effects ,m t  to represent unobserved causes of reporting 

( ), 0 1 , ,β βm t m t m tlogit r pos= + × +   (7) 

Total infections by municipality and age ,m aI  are a frac-

tion mp  of the total population ,m aP , i.e. 

( ), , ,m a m a mI Binomial P p∼  (8) 

An implicit assumption in Eq. 8 is the existence of an un-
derlying municipality-specific proportion infected mp  so that 

on each age group, the number of infected people is (on av-
erage) ,m m ap P× . We also assumed the following relation for 

mp  

( ) 0 μm mlogit p p= +  (9) 

where 0p  represents a baseline of the proportion infected 

and μm  is a municipality-specific random effect. 

We use parameters [ ],γ 0,1m t ∈  to represent the temporal 

spread of infections; ,γ 1m tt
=∑  so that , , , ,γm a t m t m aI I= . Infec-

tions, cases, attributed deaths and age-stratified population 
sizes are linked through a cascade of binomial models. We 
relate infections, cases and reporting rates through 

( ), , ,,m t m t m tC Binomial I r∼  (10) 

Infection fatality rates ,m aIFR  relate to infections and 

deaths through another binomial model 

( ), , ,,m a m a m aD Binomial I IFR∼  (11) 

where the IFRs follow a stratified logistic-linear relation with 
socioeconomic status (SES) and age mediated by parameters 
α, η, δ: 

( ) ( ), 0 1α α η δm a a m alogit IFR SES= + + × +  (12) 

A comprehensive explanation of this hierarchical Bayes-
ian methodology, including a discussion of its assumptions 
and several sensitivity analysis and robustness check to mis-
specification of our assumptions appear in the supplemen-
tary materials. 
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Fig. 1. Socioeconomic status, COVID-19 cases and deaths, and mobility data in Greater Santiago. 
(A) Municipalities that are part of the Greater Santiago are colored according to their socioeconomic 
status (SES), where a lower score is indicative of a lower SES. (B) COVID-19 cases normalized by 
population size per municipality. Municipalities are sorted by SES starting with the one that has the 
highest SES at the top. (C) COVID-19 attributed deaths normalized by population size per 
municipality. (D) Age-adjusted adjusted COVID-19 attributed death rates and its association with 
SES. The dots and the whiskers represent the median and the 95% confidence intervals respectively, 
reflecting uncertainty on the standard population used for weighting. (E) Daily reduction in mobility 
by municipality colored by its SES value. (F) Average reduction in mobility during the full lockdown 
period and its association with SES. The urban and the business centers, Santiago and Providencia 
respectively, experienced a greater reduction in mobility than expected based just on their 
socioeconomic profile. 
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Fig. 2. Inferred cases and reported tests conducted for the Greater Santiago area. (A) Inferred 
and reported cases over time. For our RmMAP reconstructions, we considered the log-normal onset-
to-death distribution described in (38) and two age-stratified IFR estimates, one from Diamond 
Princess cruise ship (39) and another from a seroprevalence study in Spain (40). For comparison, 
we also present reconstructions based on the Covidestim method (41), and by the re-scaling of case 
counts by the under-reporting estimates obtained with the method of Russell et at. (42).  
(B) Association between average daily test and SES during the early peak. The early peak is defined 
as those cases reported between 03/08 and 04/09. (C) Reported cases per 10,000 by municipality 
during the early peak. (D) Test per 10,000 by municipality during the early peak. (E) Inferred cases 
obtained from the RmMAP-Spain model per 10,000 by municipality during the early peak. For panels 
C-E, the record of at least one COVID-19 confirmed or attributed death for that particular week is 
highlighted with solid and dashed boxes respectively. 
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Fig. 3. Excess deaths and its association with demographic and socioeconomic factors.  
(A) Observed deaths (solid dark blue line) in Greater Santiago compared to predicted deaths for 
2020 (solid light blue line and its confident intervals shaded in lighter color), using a Gaussian 
process regression model built with historical mortality data from 2000 to 2019 (dashed blue lines). 
The values contain all the possible causes of deaths. (B) Age-specific trends of the observed deaths 
compared to the predicted deaths for 2020. (C) COVID-19 deaths versus excess deaths. COVID-19 
confirmed deaths are shown in light green, while COVID-19 attributed deaths are shown in dark 
green. Excess deaths correspond to difference between observed and predicted deaths.  
(D) Comparison of excess deaths and COVID-19 attributed deaths per municipality colored by SES, 
and normalized by population size. (E) Monthly average of Z-scores of observed deaths between 
April and July by age group. The Z-scores correspond to the standard deviations over expected 
values. (F) Historical deaths due to influenza and pneumonia (teal dashed lines), and cancer (pink 
dashed lines) compared to the observed deaths during 2020 (solid lines). 
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  Fig. 4. Testing capacity and waiting times. (A) Positivity over time. Positivity is defined as the 
proportion of PCR tests that are positive on a given week. (B) Association between average positivity 
and SES. (C) Association between positivity and weekly number of cases per 10,000. (D) Association 
between the overall age-adjusted number of deaths per 10,000 and the average positivity over the 
same period. (E) Association between average daily tests per 10,000 and SES. (F) Association 
between tests per 10,000 and deaths per 10,000. (G) Timeliness over time. Timeliness is defined as 
the proportion of PCR tests that appear in the public records within one week from the onset of 
symptoms. Two weeks in June (shaded in gray) were excluded from the analysis due to 
inconsistencies in data, leading to unreliable delay estimates. (H) Association between average 
timeliness and SES. (I) Association between timeliness and weekly number of cases per 10,000.  
(J) Association between the overall age-adjusted number of deaths per 10,000 and the average 
timeliness. (K) Association between timeliness and positivity. Dots are representative of weekly data 
per municipality. (L) Association between tests per death (age-adjusted) and SES. Figures with 
different dot colors illustrate the SES value according to the reference presented in (A). 
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Fig. 5. Inference of case and infection fatality rates by age and socioeconomic status.  
(A) Estimates of case fatality rate (CFR) by age and SES based on a simple assignment of cases to 
age groups. Our estimates of CFR have been validated by the official ICOVID platform 
(www.icovidchile.cl/) which confirmed that 119 out of the 136 observed CFRs fall within our 
confidence intervals. CIs are derived from a bootstrap procedure described in the supplementary 
materials. (B) Inferred infection fatality rate (IFR) by age and SES using our ensemble of hierarchical 
Bayesian models, along with associated credible intervals. (C) IFR ratio between the low and high 
socioeconomic category by age group. Four socioeconomic categories were defined based on SES 
quantiles: low, mid-low, mid-high, and high. 
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